Against all Odds

Michael P. LaValley Boston University http://people.bu.edu/mlava/

ACR/ARHP Annual Scientific Meeting San Antonio Texas 10/20/2004

Outline

- Measures of Risk
 - Relative Risk (RR)
 - Odds Ratio (OR)
- Obtaining Adjusted RR
 - Logistic Regression with Transformation
 - Binomial Regression
 - Modified Poisson Regression
- Summary

Measures of Risk

- Measure relationship between two binary variables
 - Binary variables: 0/1 or No/Yes
- Usually expressed as
 - At how much greater risk of X is one group than another?
- Example
 - At how much greater risk of osteoarthritis (OA) are women than men?

Measures of Risk

- Often want to adjust for differences between groups in other factors
 - Remove the effects of the other factors from the group difference
- Example
 - At how much greater risk of OA are women than men after adjusting for age and body mass index?

Relative Risk

- Relative Risk (RR)
 - Ratio of the probabilities of the occurrence of the outcome of interest in group 1 to group 2

$$RR = \frac{\Pr_1}{\Pr_2}$$

- Pr₁ is the probability of the outcome in group 1
- Pr_2 is the probability of the outcome in group 2

Odds

- Odds (used in odds ratio)
 - Odds are the probability of occurrence divided by the probability of non-occurrence

$$Odds_1 = \frac{\Pr_1}{1 - \Pr_1}$$

– $Odds_2$ defined using Pr_2

Odds

- Odds are used in gambling
 - 'The odds are two to one for Seabiscuit to win'
 - 2:1 \rightarrow odds = 2 \rightarrow Pr = 0.67
- Translating odds to probabilities
 - Odds = $3.0 \leftrightarrow Pr = 0.75$
 - Odds = $2.0 \leftrightarrow Pr = 0.67$
 - Odds = $1.0 \leftrightarrow Pr = 0.50$
 - Odds = $0.5 \leftrightarrow Pr = 0.33$

Odds Ratio

- Odds Ratio (OR)
 - Ratio of the odds of the occurrence of the event of interest in group 1 to group 2

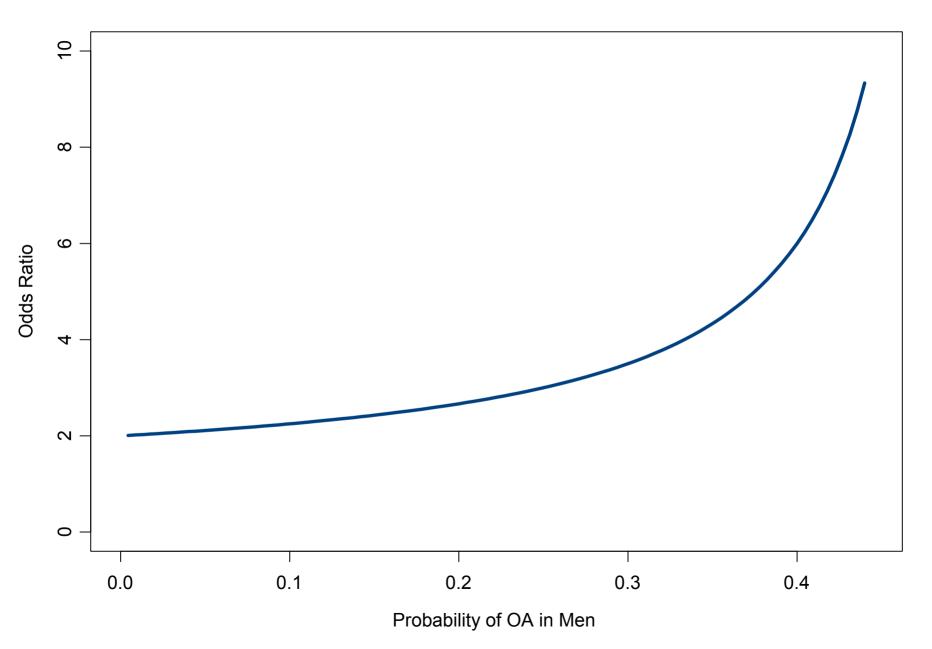
$$OR = \frac{Odds_1}{Odds_2} = \frac{\left(\frac{\Pr_1}{(1 - \Pr_1)}\right)}{\left(\frac{\Pr_2}{(1 - \Pr_2)}\right)}$$

• RR and OR are *ratio* measures

- 1.0 is the point of no difference between groups (the null value)
- Are greater than 1 if group 1 is at increased risk relative to group 2
- Are less than 1 if group 1 is at decreased risk relative to group 2
- Reciprocals are the same distance from the null value
 - E.g. 2 and $\frac{1}{2}$ are equivalent group differences

- The RR is more understandable
 - When the RR=2 then the probability of the outcome in group 1 is twice that of group 2
 - This is not true for the odds ratio
- Most people are more comfortable with probabilities or percentages that with odds

- However, the OR has some advantages
 - In case-control studies the OR can be estimated but not the RR
 - The OR is symmetric to which outcome level is chosen as being of interest, the RR is not


- When are the RR and OR Similar?
 - If the probability of the event is small, the odds and the probability are close

$$Odds_1 = \frac{\Pr_1}{1 - \Pr_1} \approx \Pr_1$$

- When the probability of the event is small in both the OR is a good approximation to the RR
- Rule of thumb for small: Pr < 0.1</p>

- The OR is always more extreme (farther from 1) than the RR
- When the events of interest are common, the OR can be much larger than the RR

Odds Ratio when Relative Risk is 2

Which is Better?

- For case-control studies need to present the OR
- For cohort studies and clinical trials the RR is better to report
 - Reduces the chance of incorrect interpretation
 - Becoming preferred to report RR in medical journals

- In the Framingham Osteoarthritis study, prevalence of osteoarthritis (OA) was measured in 1992-93
- Female sex is an established risk factor for OA
- At how much greater risk of osteoarthritis are women than men in this study?

	 Subset of 840 subjects to evaluate the prevalence of OA in women versus men 		No OA	ΟΑ	Total
		Women	316	222	538
	 538 women 				
	 302 men 513 (61%) no OA 	Men	197	105	302
	 327 (39%) with OA 	Total	513	327	840
	• 021 (0370) WITH OA				

 In men 197 (65%) no OA 197 (65%) no OA 		No OA	OA	Total
 105 (35%) with OA In women 316 (59%) no OA 222 (41%) with OA RR = 0.41/0.35 = 1.19 OR = 1.32 	Women	316	222	538
	Men	197	105	302
	Total	513	327	840

- Women have 1.19 times *the risk* of OA compared to men
- Women have 1.30 times *the odds* of OA compared to men
- If we interpret OR as an RR, we would mistakenly conclude women are at 1.3 times the risk of OA

 Suppose we look at No OA as the outcome 		No OA	ΟΑ	Total
 RR for No OA is 0.59/0.65 = 0.91 	Women	316	222	538
 But RR for OA is 1.19 and 1/1.19 = 0.84 The RR implies that sex 	Men	197	105	302
plays a larger role for OA than for No OA!	Total	513	327	840

- RR is not symmetric around the null value for both outcome levels
 - RR for No OA \neq 1/RR for OA
- OR is symmetric
 - OR for No OA = 1/OR for OA
- Usually the outcome to choose is clear and this isn't a problem. But some situations aren't clear
 - E.g. use 'lived' or 'died'?

Adjusted RR

- Logistic regression provides adjusted OR
- But, until recently it has been difficult to obtain adjusted RR
- Three methods for getting adjusted RR
 - Logistic regression with transformation
 - Binomial regression
 - Modified Poisson regression

Logistic Regression

- Logistic regression is widely used regression method for binary outcomes
- Logistic regression coefficients are log(OR)
- Provides adjusted OR if adjustors are used as additional predictors

Logistic Regression

- If outcome probabilities are < 0.1 for all values of the predictors then the OR are good approximations to RR
- Otherwise Zhang and Yu proposed a formula to convert OR to RR

$$RR = \frac{OR}{\left(1 - \Pr_2\right) + \left(\Pr_2 \times OR\right)}$$

Logistic Regression

- However the conversion formula has been criticized*
 - Leads to confidence intervals for RR that are too small
 - Gives biased estimate if some regression predictors are confounders
 - Doesn't work if there are interactions in the regression model

*See McNutt et al.

Binomial Regression

- Binomial regression is a rarely used regression method for binary outcomes
- Binomial regression coefficients are log(RR)
- Provides adjusted RR if adjustors are used as additional predictors

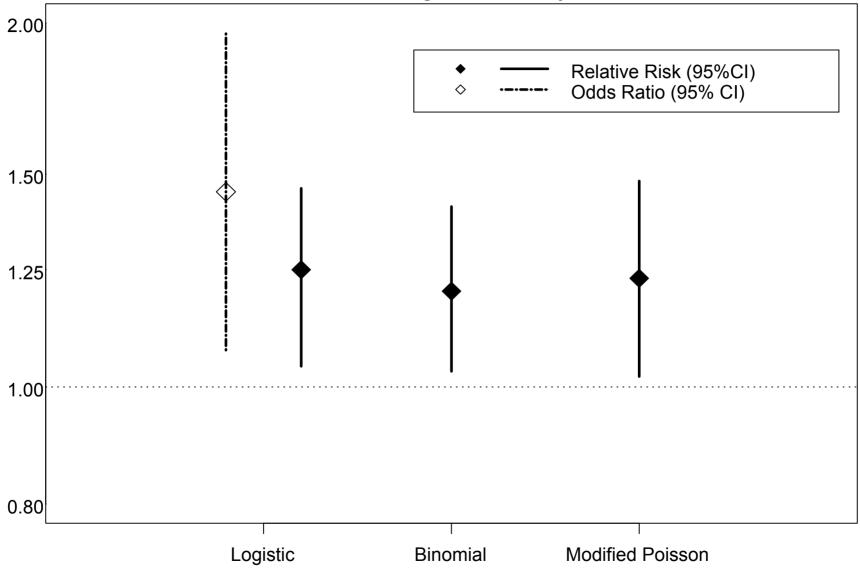
Binomial Regression

- This model often fails due to numerical problems
- Especially failure prone if
 - Correlated predictors
 - One or more continuous predictors

Modified Poisson Regression

- Poisson regression is a method for count outcomes
 - Count outcomes: 0, 1, 2, 3,
- Poisson regression coefficients are log(RR)
- Provides adjusted RR if adjustors are used as additional predictors
- Poisson regression is conservative for binary outcomes
 - Less likely to be significant
 - Confidence intervals too wide

Modified Poisson Regression


- Modification due to Zou
 - Adjust variability with generalized estimating equations (GEE)
 - Uses variability in the data to adjust model
- This has been shown to work very well
- Software implementation
 - SAS in Lundquist
 - STATA in Barros and Hirakata

- We found greater risk of OA in women than men
 - Could this be due to age differences between women and men?
 - Could this be due to differences in body mass index between women and men?
- Use regression models with sex, age, and body mass index

- After adjustment for age and body mass index
 - Logistic OR = 1.45
 - Transformed Logistic RR = 1.25
 - Binomial RR = 1.20*
 - Modified Poisson RR = 1.23

*Failed to arrive at final estimate

Adjusted Effect of Sex on OA Framingham Study

Summary

- Medical literature is moving toward reporting RR instead of OR whenever possible
 - Need to keep in mind that the RR changes in nonintuitive ways when outcomes are switched
- When reporting OR make it clear that it is not the RR
- Modified Poisson regression will become standard method for obtaining adjusted RR

References

- Simon SD. Understanding the odds ratio and the relative risk. *Journal of Andrology* **22**:533-6, 2001
- Zhang J, Yu KF. What's the relative risk? *JAMA* 280:1690-1, 1998
- McNutt L-A, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. *American Journal of Epidemiology* 157:940-3, 2003

References

- Zou G. A modified poisson regression approach to prospective studies with binary data. *American Journal of Epidemiology* **159**:702-6, 2004
- Lundquist K. SAS FAQ: How to estimate relative risk in SAS using PROC GENMOD for common outcomes in cohort studies. http://www.ats.ucla.edu/stat/sas/faq/relative_risk.htm
- Barros AJD, Hirakata VN. Alternatives for logistic regression in cross-sectional studies. BMC Medical Research Methodology 3:21, 2003